
-- --

Lab Exercises 347

Lab 6
Representation: A Hex Dump Program In C

Purpose

To learn how values in memory can be presented in hexadecimal form.

Background Reading And Preparation

Read Chapter 3 on data representation, and find both the integer and address sizes
for the computer you use†. Ask the lab instructor for an exact specification for the out-
put format.

Overview

Write a C procedure that produces a hexadecimal dump of memory in ASCII. The
lab instructor will give details about the format for a particular computer, but the gen-
eral form is as follows:

Address Words In Hexadecimal ASCII characters
--------- -------- -------- -------- -------- ----------------
aaaaaaaa xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx cccccccccccccccc

In the example, each line corresponds to a set of memory locations. The string
aaaaaaaa denotes the starting memory address (in hexadecimal) for values on the line,
xxxxxxxx denotes the value of a word in memory (also in hexadecimal), and
cccccccccccccccc denotes the same memory locations when interpreted as ASCII char-
acters. Note: the ASCII output only displays printable characters; all other characters
are displayed as blanks.

Procedure And Details (checkmark as each is completed)

222222 1. Create a procedure, mdump that takes two arguments that each specify an ad-
dress in memory. The first argument specifies the address where the dump
should start, and the second argument specifies the highest address that needs
to be included in the dump. Test to ensure that the starting address is less
than the ending address.

33333333333333333333333333333333
†On most computers, the address size equals the integer size.



-- --

348 Essentials of Computer Arch.

222222 2. Modify both arguments so each value specifies an appropriate word address
(i.e., an exact multiple of four bytes). For the starting address, round down
to the nearest word address; for the ending address, round up.

222222 3. Test the procedure to verify that the addresses are rounded correctly.

222222 4. Add code that uses printf to produce headings for the hexadecimal dump, and
verify that the headings are correct.

222222 5. Add code that iterates though the addresses and produces lines of hexade-
cimal values.

222222 6. To verify that procedure mdump outputs correct values, declare a struct in
memory, place values in fields, and invoke the procedure to format the
values.

222222 7. Add code that produces printable ASCII character values for each of the
memory locations, as shown above.

222222 8. Verify that only printable characters are included in the output (i.e., verify
that a non-printable character such as 0x01 is mapped into a blank).

Optional Extensions (checkmark as each is completed)

222222 9. Extend the dump program to start and stop on a byte address (i.e., omit lead-
ing values on the first line of output and trailing values on the last line).

22222 10. Change the program to print values in decimal instead of ASCII character
form.

22222 11. Modify the dump program so instead of printing ASCII values, the program
assumes the memory corresponds to machine instructions and gives mnemon-
ic opcodes for each instruction. For example, if the first word on the line
corresponds to a load instruction, print load.

22222 12. Add an argument to procedure mdump that selects from among the various
forms of output (ASCII characters, decimal, or instructions).


